Processing math: 100%
Subalgebra A12+2A41E16
93 out of 119
Computations done by the calculator project.

Subalgebra type: A12+2A41 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A12+A41 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: E16

Elements Cartan subalgebra scaled to act by two by components: A12: (1, 2, 2, 3, 2, 1): 2, (0, -1, 0, 0, 0, 0): 2, A41: (0, 0, 0, 0, 2, 2): 8, A41: (2, 0, 2, 0, 0, 0): 8
Dimension of subalgebra generated by predefined or computed generators: 14.
Negative simple generators: g36, g2, g5+g6, g1+g3
Positive simple generators: g36, g2, 2g6+2g5, 2g3+2g1
Cartan symmetric matrix: (21001200001/200001/2)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (2100120000800008)
Decomposition of ambient Lie algebra: Vω2+2ω3+2ω4Vω1+2ω3+2ω4V4ω4V4ω3V2ω4V2ω3Vω1+ω2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 7) ; the vectors are over the primal subalgebra.g35g6+g5g3+g1g11g7g34g24
weightω1+ω22ω32ω44ω34ω4ω1+2ω3+2ω4ω2+2ω3+2ω4
Isotypic module decomposition over primal subalgebra (total 7 isotypic components).
Isotypical components + highest weightVω1+ω2 → (1, 1, 0, 0)V2ω3 → (0, 0, 2, 0)V2ω4 → (0, 0, 0, 2)V4ω3 → (0, 0, 4, 0)V4ω4 → (0, 0, 0, 4)Vω1+2ω3+2ω4 → (1, 0, 2, 2)Vω2+2ω3+2ω4 → (0, 1, 2, 2)
Module label W1W2W3W4W5W6W7
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g35
g2
g36
h2
h6+2h5+3h4+2h3+2h2+h1
g36
2g2
g35
Semisimple subalgebra component.
g6g5
h6+h5
g5+g6
Semisimple subalgebra component.
g3g1
h3+h1
g1+g3
g11
g6g5
h6+h5
3g53g6
6g11
g7
g3g1
h3+h1
3g13g3
6g7
g34
g8
g32
g33
g4
g14
g13
g29
g30
g31
g10
g9
g20
g19
g17
g26
g28
g16
g15
g12
g25
g22
g23
g21
g18
g27
g24
g24
g27
g18
g21
g23
g22
g25
g12
g15
g16
g28
g26
g17
g19
g20
g9
g10
g31
g30
g29
g13
g14
g4
g33
g32
g8
g34
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as aboveω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
2ω4
0
2ω4
4ω3
2ω3
0
2ω3
4ω3
4ω4
2ω4
0
2ω4
4ω4
ω1+2ω3+2ω4
ω1+ω2+2ω3+2ω4
ω1+2ω4
ω1+2ω3
ω2+2ω3+2ω4
ω1+ω2+2ω4
ω1+ω2+2ω3
ω12ω3+2ω4
ω1
ω1+2ω32ω4
ω2+2ω4
ω2+2ω3
ω1+ω22ω3+2ω4
ω1+ω2
ω1+ω2+2ω32ω4
ω12ω3
ω12ω4
ω22ω3+2ω4
ω2
ω2+2ω32ω4
ω1+ω22ω3
ω1+ω22ω4
ω12ω32ω4
ω22ω3
ω22ω4
ω1+ω22ω32ω4
ω22ω32ω4
ω2+2ω3+2ω4
ω1ω2+2ω3+2ω4
ω2+2ω4
ω2+2ω3
ω1+2ω3+2ω4
ω1ω2+2ω4
ω1ω2+2ω3
ω22ω3+2ω4
ω2
ω2+2ω32ω4
ω1+2ω4
ω1+2ω3
ω1ω22ω3+2ω4
ω1ω2
ω1ω2+2ω32ω4
ω22ω3
ω22ω4
ω12ω3+2ω4
ω1
ω1+2ω32ω4
ω1ω22ω3
ω1ω22ω4
ω22ω32ω4
ω12ω3
ω12ω4
ω1ω22ω32ω4
ω12ω32ω4
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
2ω4
0
2ω4
4ω3
2ω3
0
2ω3
4ω3
4ω4
2ω4
0
2ω4
4ω4
ω1+2ω3+2ω4
ω1+ω2+2ω3+2ω4
ω1+2ω4
ω1+2ω3
ω2+2ω3+2ω4
ω1+ω2+2ω4
ω1+ω2+2ω3
ω12ω3+2ω4
ω1
ω1+2ω32ω4
ω2+2ω4
ω2+2ω3
ω1+ω22ω3+2ω4
ω1+ω2
ω1+ω2+2ω32ω4
ω12ω3
ω12ω4
ω22ω3+2ω4
ω2
ω2+2ω32ω4
ω1+ω22ω3
ω1+ω22ω4
ω12ω32ω4
ω22ω3
ω22ω4
ω1+ω22ω32ω4
ω22ω32ω4
ω2+2ω3+2ω4
ω1ω2+2ω3+2ω4
ω2+2ω4
ω2+2ω3
ω1+2ω3+2ω4
ω1ω2+2ω4
ω1ω2+2ω3
ω22ω3+2ω4
ω2
ω2+2ω32ω4
ω1+2ω4
ω1+2ω3
ω1ω22ω3+2ω4
ω1ω2
ω1ω2+2ω32ω4
ω22ω3
ω22ω4
ω12ω3+2ω4
ω1
ω1+2ω32ω4
ω1ω22ω3
ω1ω22ω4
ω22ω32ω4
ω12ω3
ω12ω4
ω1ω22ω32ω4
ω12ω32ω4
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3M0M2ω3M2ω4M0M2ω4M4ω3M2ω3M0M2ω3M4ω3M4ω4M2ω4M0M2ω4M4ω4Mω1+2ω3+2ω4Mω1+ω2+2ω3+2ω4Mω2+2ω3+2ω4Mω1+2ω4Mω1+2ω3Mω1+ω2+2ω4Mω1+ω2+2ω3Mω2+2ω4Mω12ω3+2ω4Mω2+2ω3Mω1Mω1+2ω32ω4Mω1+ω22ω3+2ω4Mω1+ω2Mω1+ω2+2ω32ω4Mω22ω3+2ω4Mω2Mω12ω3Mω2+2ω32ω4Mω12ω4Mω1+ω22ω3Mω1+ω22ω4Mω22ω3Mω22ω4Mω12ω32ω4Mω1+ω22ω32ω4Mω22ω32ω4Mω2+2ω3+2ω4Mω1ω2+2ω3+2ω4Mω1+2ω3+2ω4Mω2+2ω4Mω2+2ω3Mω1ω2+2ω4Mω1ω2+2ω3Mω1+2ω4Mω22ω3+2ω4Mω1+2ω3Mω2Mω2+2ω32ω4Mω1ω22ω3+2ω4Mω1ω2Mω1ω2+2ω32ω4Mω12ω3+2ω4Mω1Mω22ω3Mω1+2ω32ω4Mω22ω4Mω1ω22ω3Mω1ω22ω4Mω12ω3Mω12ω4Mω22ω32ω4Mω1ω22ω32ω4Mω12ω32ω4
Isotypic characterMω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3M0M2ω3M2ω4M0M2ω4M4ω3M2ω3M0M2ω3M4ω3M4ω4M2ω4M0M2ω4M4ω4Mω1+2ω3+2ω4Mω1+ω2+2ω3+2ω4Mω2+2ω3+2ω4Mω1+2ω4Mω1+2ω3Mω1+ω2+2ω4Mω1+ω2+2ω3Mω2+2ω4Mω12ω3+2ω4Mω2+2ω3Mω1Mω1+2ω32ω4Mω1+ω22ω3+2ω4Mω1+ω2Mω1+ω2+2ω32ω4Mω22ω3+2ω4Mω2Mω12ω3Mω2+2ω32ω4Mω12ω4Mω1+ω22ω3Mω1+ω22ω4Mω22ω3Mω22ω4Mω12ω32ω4Mω1+ω22ω32ω4Mω22ω32ω4Mω2+2ω3+2ω4Mω1ω2+2ω3+2ω4Mω1+2ω3+2ω4Mω2+2ω4Mω2+2ω3Mω1ω2+2ω4Mω1ω2+2ω3Mω1+2ω4Mω22ω3+2ω4Mω1+2ω3Mω2Mω2+2ω32ω4Mω1ω22ω3+2ω4Mω1ω2Mω1ω2+2ω32ω4Mω12ω3+2ω4Mω1Mω22ω3Mω1+2ω32ω4Mω22ω4Mω1ω22ω3Mω1ω22ω4Mω12ω3Mω12ω4Mω22ω32ω4Mω1ω22ω32ω4Mω12ω32ω4

Semisimple subalgebra: W_{1}+W_{2}+W_{3}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 472.50)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00): (266.67, 505.83)
1: (0.00, 1.00, 0.00, 0.00): (233.33, 539.17)
2: (0.00, 0.00, 1.00, 0.00): (200.00, 472.50)
3: (0.00, 0.00, 0.00, 1.00): (200.00, 472.50)



Made total 3798 arithmetic operations while solving the Serre relations polynomial system.