Highest vectors of representations (total 7) ; the vectors are over the primal subalgebra. | g35 | g6+g5 | g3+g1 | g11 | g7 | g34 | g24 |
weight | ω1+ω2 | 2ω3 | 2ω4 | 4ω3 | 4ω4 | ω1+2ω3+2ω4 | ω2+2ω3+2ω4 |
Isotypical components + highest weight | Vω1+ω2 → (1, 1, 0, 0) | V2ω3 → (0, 0, 2, 0) | V2ω4 → (0, 0, 0, 2) | V4ω3 → (0, 0, 4, 0) | V4ω4 → (0, 0, 0, 4) | Vω1+2ω3+2ω4 → (1, 0, 2, 2) | Vω2+2ω3+2ω4 → (0, 1, 2, 2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | 2ω4 0 −2ω4 | 4ω3 2ω3 0 −2ω3 −4ω3 | 4ω4 2ω4 0 −2ω4 −4ω4 | ω1+2ω3+2ω4 −ω1+ω2+2ω3+2ω4 ω1+2ω4 ω1+2ω3 −ω2+2ω3+2ω4 −ω1+ω2+2ω4 −ω1+ω2+2ω3 ω1−2ω3+2ω4 ω1 ω1+2ω3−2ω4 −ω2+2ω4 −ω2+2ω3 −ω1+ω2−2ω3+2ω4 −ω1+ω2 −ω1+ω2+2ω3−2ω4 ω1−2ω3 ω1−2ω4 −ω2−2ω3+2ω4 −ω2 −ω2+2ω3−2ω4 −ω1+ω2−2ω3 −ω1+ω2−2ω4 ω1−2ω3−2ω4 −ω2−2ω3 −ω2−2ω4 −ω1+ω2−2ω3−2ω4 −ω2−2ω3−2ω4 | ω2+2ω3+2ω4 ω1−ω2+2ω3+2ω4 ω2+2ω4 ω2+2ω3 −ω1+2ω3+2ω4 ω1−ω2+2ω4 ω1−ω2+2ω3 ω2−2ω3+2ω4 ω2 ω2+2ω3−2ω4 −ω1+2ω4 −ω1+2ω3 ω1−ω2−2ω3+2ω4 ω1−ω2 ω1−ω2+2ω3−2ω4 ω2−2ω3 ω2−2ω4 −ω1−2ω3+2ω4 −ω1 −ω1+2ω3−2ω4 ω1−ω2−2ω3 ω1−ω2−2ω4 ω2−2ω3−2ω4 −ω1−2ω3 −ω1−2ω4 ω1−ω2−2ω3−2ω4 −ω1−2ω3−2ω4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | 2ω4 0 −2ω4 | 4ω3 2ω3 0 −2ω3 −4ω3 | 4ω4 2ω4 0 −2ω4 −4ω4 | ω1+2ω3+2ω4 −ω1+ω2+2ω3+2ω4 ω1+2ω4 ω1+2ω3 −ω2+2ω3+2ω4 −ω1+ω2+2ω4 −ω1+ω2+2ω3 ω1−2ω3+2ω4 ω1 ω1+2ω3−2ω4 −ω2+2ω4 −ω2+2ω3 −ω1+ω2−2ω3+2ω4 −ω1+ω2 −ω1+ω2+2ω3−2ω4 ω1−2ω3 ω1−2ω4 −ω2−2ω3+2ω4 −ω2 −ω2+2ω3−2ω4 −ω1+ω2−2ω3 −ω1+ω2−2ω4 ω1−2ω3−2ω4 −ω2−2ω3 −ω2−2ω4 −ω1+ω2−2ω3−2ω4 −ω2−2ω3−2ω4 | ω2+2ω3+2ω4 ω1−ω2+2ω3+2ω4 ω2+2ω4 ω2+2ω3 −ω1+2ω3+2ω4 ω1−ω2+2ω4 ω1−ω2+2ω3 ω2−2ω3+2ω4 ω2 ω2+2ω3−2ω4 −ω1+2ω4 −ω1+2ω3 ω1−ω2−2ω3+2ω4 ω1−ω2 ω1−ω2+2ω3−2ω4 ω2−2ω3 ω2−2ω4 −ω1−2ω3+2ω4 −ω1 −ω1+2ω3−2ω4 ω1−ω2−2ω3 ω1−ω2−2ω4 ω2−2ω3−2ω4 −ω1−2ω3 −ω1−2ω4 ω1−ω2−2ω3−2ω4 −ω1−2ω3−2ω4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3⊕M0⊕M−2ω3 | M2ω4⊕M0⊕M−2ω4 | M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3 | M4ω4⊕M2ω4⊕M0⊕M−2ω4⊕M−4ω4 | Mω1+2ω3+2ω4⊕M−ω1+ω2+2ω3+2ω4⊕M−ω2+2ω3+2ω4⊕Mω1+2ω4⊕Mω1+2ω3⊕M−ω1+ω2+2ω4⊕M−ω1+ω2+2ω3⊕M−ω2+2ω4⊕Mω1−2ω3+2ω4⊕M−ω2+2ω3⊕Mω1⊕Mω1+2ω3−2ω4⊕M−ω1+ω2−2ω3+2ω4⊕M−ω1+ω2⊕M−ω1+ω2+2ω3−2ω4⊕M−ω2−2ω3+2ω4⊕M−ω2⊕Mω1−2ω3⊕M−ω2+2ω3−2ω4⊕Mω1−2ω4⊕M−ω1+ω2−2ω3⊕M−ω1+ω2−2ω4⊕M−ω2−2ω3⊕M−ω2−2ω4⊕Mω1−2ω3−2ω4⊕M−ω1+ω2−2ω3−2ω4⊕M−ω2−2ω3−2ω4 | Mω2+2ω3+2ω4⊕Mω1−ω2+2ω3+2ω4⊕M−ω1+2ω3+2ω4⊕Mω2+2ω4⊕Mω2+2ω3⊕Mω1−ω2+2ω4⊕Mω1−ω2+2ω3⊕M−ω1+2ω4⊕Mω2−2ω3+2ω4⊕M−ω1+2ω3⊕Mω2⊕Mω2+2ω3−2ω4⊕Mω1−ω2−2ω3+2ω4⊕Mω1−ω2⊕Mω1−ω2+2ω3−2ω4⊕M−ω1−2ω3+2ω4⊕M−ω1⊕Mω2−2ω3⊕M−ω1+2ω3−2ω4⊕Mω2−2ω4⊕Mω1−ω2−2ω3⊕Mω1−ω2−2ω4⊕M−ω1−2ω3⊕M−ω1−2ω4⊕Mω2−2ω3−2ω4⊕Mω1−ω2−2ω3−2ω4⊕M−ω1−2ω3−2ω4 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3⊕M0⊕M−2ω3 | M2ω4⊕M0⊕M−2ω4 | M4ω3⊕M2ω3⊕M0⊕M−2ω3⊕M−4ω3 | M4ω4⊕M2ω4⊕M0⊕M−2ω4⊕M−4ω4 | Mω1+2ω3+2ω4⊕M−ω1+ω2+2ω3+2ω4⊕M−ω2+2ω3+2ω4⊕Mω1+2ω4⊕Mω1+2ω3⊕M−ω1+ω2+2ω4⊕M−ω1+ω2+2ω3⊕M−ω2+2ω4⊕Mω1−2ω3+2ω4⊕M−ω2+2ω3⊕Mω1⊕Mω1+2ω3−2ω4⊕M−ω1+ω2−2ω3+2ω4⊕M−ω1+ω2⊕M−ω1+ω2+2ω3−2ω4⊕M−ω2−2ω3+2ω4⊕M−ω2⊕Mω1−2ω3⊕M−ω2+2ω3−2ω4⊕Mω1−2ω4⊕M−ω1+ω2−2ω3⊕M−ω1+ω2−2ω4⊕M−ω2−2ω3⊕M−ω2−2ω4⊕Mω1−2ω3−2ω4⊕M−ω1+ω2−2ω3−2ω4⊕M−ω2−2ω3−2ω4 | Mω2+2ω3+2ω4⊕Mω1−ω2+2ω3+2ω4⊕M−ω1+2ω3+2ω4⊕Mω2+2ω4⊕Mω2+2ω3⊕Mω1−ω2+2ω4⊕Mω1−ω2+2ω3⊕M−ω1+2ω4⊕Mω2−2ω3+2ω4⊕M−ω1+2ω3⊕Mω2⊕Mω2+2ω3−2ω4⊕Mω1−ω2−2ω3+2ω4⊕Mω1−ω2⊕Mω1−ω2+2ω3−2ω4⊕M−ω1−2ω3+2ω4⊕M−ω1⊕Mω2−2ω3⊕M−ω1+2ω3−2ω4⊕Mω2−2ω4⊕Mω1−ω2−2ω3⊕Mω1−ω2−2ω4⊕M−ω1−2ω3⊕M−ω1−2ω4⊕Mω2−2ω3−2ω4⊕Mω1−ω2−2ω3−2ω4⊕M−ω1−2ω3−2ω4 |